4767 Statistics 2

Question 1

4767

Ques			
(i)	EITHER: $S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 880.1 - \frac{1}{48} \times 781.3 \times 57.8$	M1 for method for S_{xy}	
	= -60.72	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 14055 - \frac{1}{48} \times 781.3^2 = 1337.7$	A1 for at least one of S_{xy} , S_{xx} , S_{yy} . correct	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 106.3 - \frac{1}{48} \times 57.8^2 = 36.70$	M1 for structure of <i>r</i> A1 CAO	
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{-00.72}{\sqrt{1337.7 \times 36.70}} = -0.274$	(-0.27 to -0.28) M1 for method for cov (x,y)	
	OR: $cov(x,y) = \frac{\sum xy}{n} - \frac{1}{xy} = 880.1/48 - 16.28 \times 1.204$	M1 for method for at least	
	= -1.265 rmsd(x) = $\sqrt{\frac{S_{xx}}{x}} = \sqrt{(1337.7/48)} = \sqrt{27.87} = 5.279$	one msd A1 for at least one of	
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(36.70/48)} = \sqrt{0.7646} = 0.8744$	M1 for structure of r A1 CAO	5
	$r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{-1.265}{5.279 \times 0.8744} = -0.274$	(-0.27 to -0.28)	
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho < 0$ (one-tailed test)	B1 for H_0 , H_1 in symbols	
	where ρ is the population correlation coefficient	B1 for defining ρ	
	For <i>n</i> = 48, 5% critical value = 0.2403	B1FT for critical value	
	Since – 0.274 > 0.2403 we can reject H_0 :	M1 for sensible comparison leading to a	6
	There is sufficient evidence at the 5% level to suggest that there is negative correlation between education spending and population growth.	conclusion A1 for result (FT r<0) E1 FT for conclusion in words	0
(iii)	Underlying distribution must be bivariate Normal. If the distribution is bivariate Normal then the scatter diagram will have an elliptical shape.	B1 CAO for bivariate Normal B1 indep for elliptical shape	2
(iv)	Correlation does not imply causationThere could be a third factor	E1 E1	
	 increased growth could cause lower spending. Allow any sensible alternatives, including example of a possible third factor. 		3
(v)	Advantage – less effort or cost	E1	
	likely to detect any correlation which may exist)	E1	2
			18

Question 2

(i)	(A) $P(X=2) = e^{-0.37} \frac{0.37^2}{2!} = 0.0473$	M1 A1 (2 s.f.)	
	(<i>B</i>) $P(X > 2)$		
	$= 1 - (e^{-0.37} \frac{0.37^2}{2!} + e^{-0.37} \frac{0.37^1}{1!} + e^{-0.37} \frac{0.37^0}{0!})$	M1 for $P(X = 1)$ and P(X = 0) M1 for complete method A1 NB Answer given	5
	= 1 - (0.0473 + 0.2556 + 0.6907) = 0.0064		
(ii)	P(At most one day more than 2) = $\binom{30}{1} \times 0.9936^{29} \times 0.0064 + 0.9936^{30} =$ = 0.1594 + 0.8248 = 0.9842	M1 for coefficient M1 for 0.9936 ²⁹ × 0.0064 M1 for 0.993630 A1 CAO (min 2sf)	4
(iii)	$\lambda = 0.37 \times 10 = 3.7$	B1 for mean (SOI)	
	P(X > 8) = 1 - 0.9863	M1 for probability	3
	= 0.0137	A1 CAO	
(iv)	Mean no. per 1000ml = $200 \times 0.37 = 74$ Using Normal approx. to the Poisson, $X \sim N(74, 74)$	B1 for Normal approx. with correct parameters (SOI)	
	$P(X > 90) = P\left(Z > \frac{90.5 - 74}{\sqrt{74}}\right)$	B1 for continuity corr.	4
	$= P(Z > 1.918) = 1 - \Phi(1.918)$	M1 for probability using correct tail	
	= 1 - 0.9724 = 0.0276	A1 CAO (min 2 s.f.), (but FT wrong or omitted CC)	
(v)	P(questionable) = $0.0064 \times 0.0137 \times 0.0276$ = 2.42 × 10 ⁻⁶	M1	
		A1 CAO	2
			18

Question 3

Que			
(i)	$X \sim N(27500,4000^2)$		
	$P(X > 25000) = P\left(Z > \frac{25000 - 27500}{4000}\right)$	M1 for standardising	
	= P(Z > -0.625)	A1 for -0.625	
	$= \Phi(0.625) = 0.7340 (3 \text{ s.f.})$	M1 <i>dep</i> for correct tail A1CAO (must include use of differences)	4
(ii)	P(7 of 10 last more than 25000)		
	$= \binom{10}{7} \times 0.7340^7 \times 0.2660^3 = 0.2592$	M1 for coefficient M1 for $0.7340^7 \times 0.2660^3$ A1 FT (min 2sf)	3
(iii)	From tables $\Phi^{-1}(0.99) = 2.326$	544 0000	
	k - 27500 = 2.226	B1 for 2.326 seen	
	$\frac{1}{4000} = -2.326$	negative z-value	
	<i>x</i> = 27500 - 2.326 × 4000 = 18200	A1 CAO for awrt 18200	3
(iv)	H ₀ : μ = 27500; H ₁ : μ > 27500 Where μ denotes the mean lifetime of the new tyres.	B1 for use of 27500 B1 for both correct B1 for definition of μ	3
(v)	Test statistic $= \frac{28630 - 27500}{1130}$	M1 must include $\sqrt{15}$	
	$\frac{1000}{4000} = \frac{1000}{4000} = \frac{1000}{1000} = \frac{1000}{1000}$	A1 FT	
	5% level 1 tailed critical value of $z = 1.645$ 1.094 < 1.645 so not significant. There is not sufficient evidence to reject H ₀	B1 for 1.645 M1 <i>dep</i> for a sensible comparison leading to a conclusion	E
	There is insufficient evidence to conclude that the new tyres last longer.	A1 for conclusion in words in context	5
			18

4767

PMT

(i) H_0 : no association between location and species. H_1 : some association between location and species.B1 for both1(ii)Expected frequency = $38/160 \times 42 = 9.975$ Contribution = $(3 - 9.975)^2 / 9.975$ = 4.8773 M1 A1 M1 for valid attempt at $(O-E)^2/E$ A1 NB Answer given4(iii)Refer to χ_1^2 Critical value at 5% level = 9.488 B1 for 4 deg of f(seen) B1 CAO for cv4(iii)Refer to χ_1^2 Critical value at 5% level = 9.488 B1 for 4 deg of f(seen) B1 CAO for cv5Test statistic $X^2 = 32.85$ Result is significantM1 Sensible comparison, using 32.85 , leading to a conclusion A1 for correct conclusion (FT their c.v.)5(iv)Limpets appears to be some association between location and species.E16NB if H_0 H_1 reversed, or 'correlation' mentioned, do not award first B1 or final E1E15(iv)Limpets appear to be distributed as expected locations and much less in pools than expected.E1E1(v) $\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$ M1 for one fraction M1 for product of all 3 A1 CAO33	Ques					
(ii)Expected frequency = $38/160 \times 42 = 9.975$ Contribution = $(3 - 9.975)^2 / 9.975$ = 4.8773 M1 A1 M1 for valid attempt at $(O-E)^2/E$ A1 NB Answer given4(iii)Refer to χ_1^2 Critical value at 5% level = 9.488 B1 for 4 deg of f(seen) B1 CAO for cv4Test statistic $X^2 = 32.85$ M1 Sensible comparison, using 32.85 , leading to a conclusion A1 for correct conclusion (FT their c.v.)5NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1 or final E1E15(iv)• Limpets appear to be distributed as expected locations and much less in pools than expected. • Other shellfish are less frequent in exposed locations and more frequent in pools than expected.E15(v) $\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$ M1 for one fraction M1 for product of all 3 A1 CAOM1 for one fraction M1 for product of all 3 A1 CAO3	(i)	H_0 : no association between location and species. H_1 : some association between location and species.	B1 for both	1		
(iii) Critical value at 5% level = 9.488B1 for 4 deg of f(seen) B1 CAO for cv5Test statistic $X^2 = 32.85$ M1 Sensible comparison, using 32.85, leading to a 	(ii)	Expected frequency = $38/160 \times 42 = 9.975$ Contribution = $(3 - 9.975)^2 / 9.975$ = 4.8773	M1 A1 M1 for valid attempt at (O-E) ² /E A1 NB Answer given	4		
Test statistic $X^2 = 32.85$ M1 Sensible comparison, using 32.85, leading to a conclusion A1 for correct conclusion (FT their c.v.)5Result is significantThere appears to be some association between location and speciesE1 conclusion in context5NB if H ₀ H ₁ reversed, or 'correlation' mentioned, do not award first B1or final E1E1E15(iv)• Limpets appear to be distributed as expected throughout all locations.E1E15• Mussels are much more frequent in exposed locations and much less in pools than expected.E1, E15(v) $\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$ M1 for one fraction M1 for product of all 3 A1 CAO3	(iii)	Refer to χ_4^2 Critical value at 5% level = 9.488	B1 for 4 deg of f(seen) B1 CAO for cv			
There appears to be some association between location and speciesE1 conclusion in contextNB if H_0 H_1 reversed, or 'correlation' mentioned, do not award first B1 or final E1E1(iv)• Limpets appear to be distributed as expected throughout all locations. • Mussels are much more frequent in exposed locations and much less in pools than expected. 		Test statistic $X^2 = 32.85$ Result is significant	M1 Sensible comparison, using 32.85, leading to a conclusion A1 for correct conclusion (FT their c.v.)	5		
NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1or final E1E1(iv)• Limpets appear to be distributed as expected throughout all locations. • Mussels are much more frequent in exposed locations and much less in pools than expected. • Other shellfish are less frequent in exposed locations and more frequent in pools than expected. • Other shellfish are less frequent in pools than expected.E1, E15(v) $\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$ M1 for one fraction M1 for product of all 3 A1 CAO3		There appears to be some association between location and species	E1 conclusion in context			
(iv)• Limpets appear to be distributed as expected throughout all locations. • Mussels are much more frequent in exposed locations and much less in pools than expected. • Other shellfish are less frequent in exposed locations and more frequent in pools than expected.E1 E1, E15(v) $\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$ M1 for one fraction M1 for product of all 3 A1 CAO3		NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1or final E1				
(v) $\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$ M1 for one fraction M1 for product of all 3 A1 CAO 18	(iv)	 Limpets appear to be distributed as expected throughout all locations. Mussels are much more frequent in exposed locations and much less in pools than expected. Other shellfish are less frequent in exposed locations and more frequent in pools than expected. 	E1 E1, E1 E1, E1	5		
18	(v)	$\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$	M1 for one fraction M1 for product of all 3 A1 CAO	3		
				18		

Question 4